Incremental Mining of Ontological Association Rules in Evolving Environments
نویسندگان
چکیده
The process of knowledge discovery from databases is a knowledge intensive, highly user-oriented practice, thus has recently heralded the development of ontology-incorporated data mining techniques. In our previous work, we have considered the problem of mining association rules with ontological information (called ontological association rules) and devised two efficient algorithms, called AROC and AROS, for discovering ontological associations that exploit not only classification but also composition relationship between items. The real world, however, is not static. Data mining practitioners usually are confronted with a dynamic environment. New transactions are continually added into the database over time, and the ontology of items is evolved accordingly. Furthermore, the work of discovering interesting association rules is an iterative process; the analysts need to repeatedly adjust the constraint of minimum support and/or minimum confidence to discover real informative rules. Under these circumstances, how to dynamically discover association rules efficiently is a crucial issue. In this regard, we proposed a unified algorithm, called MIFO, which can handle the maintenance of discovered frequent patterns taking account of all evolving factors: new transactions updating in databases, ontology evolution and minimum support refinement. Empirical evaluation showed that MIFO is significantly faster than running our previous algorithms AROC and AROS from scratch.
منابع مشابه
Quantifying the Utility of the Past in Mining Large
| Incremental mining algorithms that can eeciently derive the current mining output by utilizing previous mining results are attractive to business organizations since data mining is typically a resource-intensive recurring activity. In this paper, we present the DELTA algorithm for the robust and eecient incremental mining of association rules on large market basket databases. DELTA guarantees...
متن کاملQuantifying the Utility of the Past in Mining Large Databases
Incremental mining algorithms that can efficiently derive the current, mining output by ut,ilizing previous mining results are attractive to business organizations since data mining is typically a resource-intensive recurring activity. In this paper, we present the DELTA algorithm for the robust and efficient incremental mining of association rules on large market basket databases. DELTA guaran...
متن کاملIntroducing an algorithm for use to hide sensitive association rules through perturb technique
Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...
متن کاملUsing a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)
In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...
متن کاملComposition of Mining Contexts for Efficient Extraction of Association Rules
Association rule mining often requires the repeated execution of some extraction algorithm for different values of the support and confidence thresholds, as well as for different source datasets. This is an expensive process, even if we use the best existing algorithms. Hence the need for incremental mining, whereby mining results already obtained can be used to accelerate subsequent steps in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009